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Abstract. The isoscalar-isovector (ρ-ω) interferences in the exclusive reactions π−p → ne+e− and π+n →
pe+e− near the ω threshold leads to a distinct difference of the dielectron invariant-mass distributions
depending on beam energy. The strength of this effect is determined by the coupling of resonances to the
nucleon vector-meson channels and other resonance properties. Therefore, a combined analysis of these
reactions can be used as a tool for determining the baryon resonance dynamics.

PACS. 13.75.-n Hadron-induced low- and intermediate-energy reactions and scattering (energy less than
or equal to 10 GeV) – 14.20.-c Baryons (including antiparticles) – 21.45.+v Few-body systems

1 Introduction

The study of dielectron production in hadron and heavy-
ion reactions addresses various issues of general interest. In
heavy-ion collisions the dileptons are considered as a tool
for accessing in-medium modifications of vector mesons.
For example, at relativistic energies, the behavior of the
ρ-meson attracted much attention because the dilepton
data [1] point to a reshuffling of strength in a hot, meson-
dominated medium [2,3]. This has been discussed in the
wider context of chiral symmetry restoration (cf. [3,4]),
QCD sum rules (cf. [5]), and hadronic models (cf. [6]).
Likewise, the dielectron production in heavy-ion collisions
at beam energies of a ∼ 1 AGeV is interesting due to
similar reasons. Also here, the dielectron channel is con-
sidered as an appropriate tool for studying in-medium
modification of vector mesons in a baryon-dense medium.
After the first round of experiments with DLS [7], the
HADES spectrometer at the heavy-ion synchrotron SIS
at GSI/Darmstadt [8], beginning now with experiments,
is built to verify these predictions related to fundamental
symmetry properties of strong interaction physics. The
experimental feasibilities at HADES (e.g., the disposal of
beams of pions, protons and a wide range of nuclei) trig-
gered an enhanced activity in this field.

Clearly, for an understanding of dielectron spectra in
hadron-nucleus and heavy-ion collisions the elementary
hadronic reaction channels must be under control. Here
the reactions NN → Xe+e− and πN → Xe+e− occupy
a highly important place in the dielectron physics. These
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reactions serve as a necessary input for kinetic approaches
(cf. [2,9]). But on the other hand, they are interesting for
themselves because they are mainly related to the baryon
resonance dynamics. Different facets of the manifestation
of baryon resonances in πN collisions have been analyzed
in refs. [9–16]. Particularly interesting are such recent the-
oretical approaches as in [12,14] which attempt a unifying
description of meson-nucleon interactions.

The quantum interference in e+e− decays of interme-
diate ρ- and ω-mesons produced in the exclusive reac-
tion π−p → nρ(ω) → ne+e− has been first discussed in
ref. [13], and the first round of HADES experiments will
experimentally address this problem [8]. Here, we would
like to emphasize that the ρ-ω interference in dielectron
production has also an another interesting aspect: The in-
terference may be used as a tool for studying the isoscalar
part of the electromagnetic current in the resonance re-
gion, what is rather difficult to do by another method.
Varying the dilepton invariant-mass M one can test low-
lying baryon resonances which are deeply subthreshold for
on-shell omega production. Of course, the contribution of
the isoscalar part (i.e., the virtual ω production) is much
smaller than the dominant isovector (i.e., virtual ρ pro-
duction) at M �= mω but it may be clearly seen in the ρ-ω
interference which is proportional to the difference of the
e+e− cross-sections in π−p and π+n collisions.

Indeed, since the electromagnetic current is the sum
of isoscalar and isovector components [17], the invariant
amplitude of the reaction π−p → ne+e− may be expressed
as

Tπ−p→ne+e− ∝ T scalar + T vector , (1)
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Fig. 1. Diagrammatic representation of the reaction πN →
Ne+e− for the s and u channels.

where, according to the vector dominance model, the
isoscalar (isovector) contributions may be identified with
ω- (ρ)-meson intermediate states, i.e. T scalar ∝ Tω and
T vector ∝ T ρ. A rotation by 180◦ around the y-axis in
isospin space leads to the transformations |p〉 → −|n〉,
|n〉 → |p〉, |π−〉 → −|π+〉, |ω〉 → |ω〉, |ρ0〉 → −|ρ0〉 and
therefore, one gets

Tπ+n→pe+e− ∝ T scalar − T vector . (2)

That means, the quantum interferences in the reactions
π−p and π+n are different, and these differences might be
well observable in the vicinity of the ω resonance peak.

In ref. [15] the ω production in πN interactions has
been analyzed within an approach based on tree level dia-
grams and effective Lagrangians. A strong contribution in
the near-threshold energy region is found to stem from the
s and u channels of nucleon and baryon resonances ampli-
tudes. In the present work, we will consider these domi-
nant amplitudes as depicted in fig. 1. (The restriction to s
and u channels, and the exclusion of the t channel, is in line
with the concept of duality.) We will account for the reso-
nances with mass MB∗ ≤ 1.72 GeV (B∗ = N,N∗,∆). This
means that, together with the Tω ± T ρ interferences one
has to consider the strong “internal” interferences within
the ω and ρ channels separately which are in turn differ-
ent in both channels. Therefore, the proper choice of the
πNB∗, ωNN∗, and ρNB∗ coupling constants and their
phases becomes the central problem. To demonstrate the
Tω ± T ρ interferences within a concise framework we rely
mainly on [18], where the relevant coupling constants are
expressed in terms of the corresponding couplings to the
nucleon by using a quark model. We will also briefly dis-
cuss the possibility to use the known partial widths of
B∗ → Nρ decays to fix the absolute values of ρNB∗ cou-
plings. Our approach highlights the role of the coupling
of subthreshold resonances to the Nρ and Nω systems
(cf. [12,14,19] for discussion and further references).

Our paper is organized as follows. In sect. 2, we define
the effective Lagrangians, derive expressions for invariant
amplitudes of the processes shown in fig. 1 and discuss
the parameter fixing. In sect. 3 the results of numerical
calculations and predictions are presented. The summary
is given in sect. 4. In the Appendices we show explicit
expressions of effective Lagrangians and invariant ampli-
tudes.

2 Amplitudes

The differential cross-section of the reaction πN →
Ne+e− averaged over the azimuthal angle of the electron
is defined as

dσ

dΩdΩedM2
=

αM2

8π2

[
Σ‖ sin2 Θ + Σ⊥(1 + cos2 Θ)

]
, (3)

where Ωe and Θ are the solid and polar angles of the
electron, Ω and θ denote the solid and polar angles of the
dielectron in the center-of-mass system of the entrance
channel, and M stands for the invariant e+e− mass. The
longitudinal and transversal distributions Σ‖,⊥ read

Σ‖ =
1

128π2s

|q|
|k|

∑
si,sf

∣∣∣∣∣
fρT

λ=0
ρ si,sf

M2 − m2
ρ + imρΓρ

+
fωTλ=0

ω si,sf

M2 − m2
ω + imωΓω

∣∣∣∣∣
2

,

Σ⊥ =
1

128π2s

|q|
|k|

∑
si,sf

∣∣∣∣∣
fρT

λ=1
ρ si,sf

M2 − m2
ρ + imρΓρ

+
fωTλ=1

ω si,sf

M2 − m2
ω + imωΓω

∣∣∣∣∣
2

, (4)

where k = (Eπ, k) and q = (EV ,q) are the four-momenta
of the pion and the dielectron (or the intermediate vector
meson) in the center-of-mass system. We denote the four-
momenta of the initial (target) and final (recoil) nucleons
by p and p′; s = (p+k)2 is the usual Mandelstam variable.
Tλ

ρ(ω)si,sf

stands for the invariant amplitude of the virtual

vector meson ρ (ω) production with polarization λ and
nucleon spin projections si, sf ; mV (with V = ω, ρ0) is
the vector meson mass, fV denote the coupling constants
of the V → e+e− decays, and ΓV are the total decay
widths. For the ω-meson, Γω = 8.41 MeV [20], while for
the wide ρ-meson, we use the energy-dependent width

Γρ = Γρ
0

[
M2 − 4m2

π

m2
ρ − 4m2

π

,

] 3
2

, (5)

keeping the strongest M -dependence which comes
from the corresponding ρππ Lagrangian, with Γρ

0 =
150.7 MeV [20].

The differential invariant-mass distribution integrated
over dΩe reads

dσ

dΩdM2
=

αM2

3π

[
Σ‖ + 2Σ⊥

]
. (6)

2.1 Effective Lagrangians

Calculating the invariant amplitudes for the basic pro-
cesses shown in fig. 1 we use the following effective inter-
action Lagrangians in symbolic notation:

LπNB∗ = fπNN ψ̄N FNπ · tψN +
∑

i

fπNB∗
i
ψ̄N Fiπ · tψi
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+
∑

i

fπNB∗
i
ψ̄N Fα

i π · tψi
α

+
∑

i

fπNB∗
i
ψ̄N Fαβ

i π · tψi
αβ + h.c., (7)

LωNN∗ = gωNN ψ̄N Gµ
NψNωµ +

∑
i

gωNN∗
i
ψ̄N Gµ

i ψiωµ

+
∑

i

gπNN∗
i
ψ̄N Gµα

i ψi
αωµ

+
∑

i

gπNN∗
i
ψ̄N Gµαβ

i ψi
αβωµ + h.c., (8)

LρNB∗ = gρNN ψ̄N Gµ
Nρµ · tψN +

∑
i

gρNB∗
i
ψ̄N Gµ

i ρµ · tψi

+
∑

i

gρNB∗
i
ψ̄N Gµα

i ρµ · tψi
α

+
∑

i

gρNB∗
i
ψ̄N Gµαβ

i ρµ · tψi
αβ + h.c., (9)

where π, ρµ and ωµ, are the pion, rho- and omega-meson
fields, ψN , ψi, ψi

α and ψi
αβ stand for the nucleon, spin-

1
2 , spin- 3

2 and spin-5
2 baryon resonances, respectively. For

spin- 3
2 and 5

2 fields we use Rarita-Schwinger field opera-
tors. α, β, γ, · · ·µ, ν, · · · are Lorentz indices; i enumerates
the corresponding baryon states. The isospin operator t
is just Pauli’s matrix τ for the nucleon and nucleon reso-
nances with isospin-1

2 , while for isospin-3
2 it is the transi-

tion matrix χ for delta resonances, see [18]. In the isoscalar
amplitude we include the contribution of the nucleon
(N) and the 8 resonances (N∗) P11(1440), D13(1520),
S11(1535), S11(1650), D15(1675), F15(1680), D13(1700),
P13(1720) (the neglect of P11(1710) is motivated in [15]).
For the isovector amplitude we consider these states and
additionally the 4 ∆ states up to 1700 MeV (all together
B∗) P33(1232), P33(1600), S31(1620), D33(1700). The ex-
plicit form of the employed effective Lagrangians is listed
in Appendix A, where the symbols G···

··· and F ···
··· are re-

solved.

2.2 Invariant amplitudes

The isoscalar invariant amplitude is the coherent sum of
nucleon and resonance channels in the following form (the
nucleon spin projections are now suppressed):

T λ
ω (N) = gωNN

fπNN

mπ
ū(p′)

×
[
A(ω)µ

s (N) + A(ω)µ
u (N)

]
u(p)ε∗λ

µ Iω,

T λ
ω (N∗) = gωNN∗

fπNN∗

mπ
ū(p′)

×
[
A(ω)µ

s (N∗) + A(ω)µ
u (N∗)

]
u(p)ε∗λ

µ Iω, (10)

where ελ
µ is the polarization four-vector for a spin-1 par-

ticle with spin projection λ, four-momentum p = (E,p)

and mass m

ελ(p) =
(

ελ · p
m

, ελ +
p (ελ · p)
m(E + m)

)
, (11)

with the three-dimensional polarization vector ε with com-
ponents ε±1 = ∓ 1√

2
(1, ±i, 0), ε0 = (0, 0, 1).

The isovector invariant amplitude has a slightly differ-
ent form because of the corresponding isospin factors

Tλ
ρ (N) = gρNN

fπNN

mπ
ū(p′)

×
[
A(ρ)µ

s (N) −A(ρ)µ
u (N)

]
u(p) ε∗λ

µ Iρ(N),

Tλ
ρ (N∗) = gρNN∗

fπNN∗

mπ
ū(p′)

×
[
A(ρ)µ

s (N∗) −A(ρ)µ

u (N∗)
]
u(p) ε∗λ

µ Iρ(N),

Tλ
ρ (∆∗) = gρN∆

fπN∆

mπ
ū(p′)

×
[
A(ρ)µ

s (∆) + A(ρ)µ
u (∆)

]
u(p) ε∗λ

µ Iρ(∆), (12)

where the isospin factor Iρ(N) = −√
2 for the reaction

π−p → ne+e− (+
√

2 for π+n → pe+e−) and Iρ(∆) =√
2/3. The s and u channel operators A(ρ,ω)µ

s and A(ρ,ω)µ
u

in eq. (10) are defined by the effective Lagrangians of
eqs. (7),(8) and listed in Appendix B. Iω =

√
2 is the

isospin factor.
Following the previous studies [15,21,22] we assume

that the vertices must be dressed by form factors for off-
shell baryons

FB∗(r2) =
Λ∗4

B

Λ∗4
B + (r2 − M2

B∗)2
, (13)

where r is the four-momentum of the virtual baryons
B∗ with mass MB∗ . Equation (13) represents the sim-
plest form being symmetric in the s and u channels. The
form factor is positive and decreases with increasing off-
shellness in both channels.

An analysis of eqs. (10)-(12) shows that i) the inter-
ference between s and u channels is different for the ω
and ρ production amplitudes, ii) an additional difference
comes from the different values and phases of the cou-
plings gV NN∗ for the same resonances, and iii) the ρ-ω
interference is different for π−p and π+n interactions, as
already anticipated in eqs. (1),(2).

2.3 Fixing parameters

The coupling constants fV of the decays V = ρ, ω → e+e−
in eq. (4) are related to the corresponding decay widths
as

f2
V =

3ΓV →e+e−

α mV
. (14)

Using Γρ→e+e− = 6.77 keV and Γω→e+e− = 0.60 keV [20]
one gets fρ = 0.06 and fω = 0.0177. The nucleon and
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nucleon resonance amplitudes in fig. 1 are determined by
the couplings fπNN , fπNB∗ , gωNN , gωNN∗ , gρNN , gρNB∗ ,
gV NN and κV NN , the resonance widths Γ 0

B∗ the branching
ratios Bπ

B∗ , and the cut-offs ΛB. For the coupling constant
fπNN we use the standard value fπNN = 1.0 [18,23]. For
the ωNN coupling we use the values gωNN = 10.35 and
κωNN = 0 determined recently in [18,24]. For the ρNN
coupling we use the value gρNN = 3 and κρNN = 6.1 [18,
23].

The values of coupling constants fπNB∗ are determined
from a comparison of calculated decay widths ΓN∗→Nπ

with the corresponding experimental values [20]. The cor-
responding signs are taken in accordance with the quark
model prediction of ref. [18].

The values of coupling constants gV NB∗ follow
from gV NB∗ = [gV NB∗/gV NN ]gV NN , where the ratio
[gV NB∗/gV NN ] is determined by the quark model calcu-
lation of ref. [18]. In subsect. 3.2 we contrast this choice
of the parameters gV NB∗ with another one.

The yet undetermined 13 cut-off parameters ΛB∗ in
eq. (13) are reduced to one by making the natural as-
sumption

ΛN = ΛB∗ ≡ ΛB . (15)

The total cross-section of real ω production in the
near-threshold region is reproduced by choosing ΛB =
0.66 GeV [15].

3 Results

3.1 Using coupling parameters from [18]

Similar to our previous study of ω production [15] we use
the coupling strengths and phases from [18]. For conve-
nience we show in table 1 all the coupling constants, de-
cay widths and branching ratios used in our calculation.

Table 1. Parameters for the resonance masses, coupling con-
stants, total decay widths and branching ratios for N∗ → Nπ
decays. The resonance masses and decay widths are in units
of MeV.

Baryon MB∗ fπNB∗ gωNB∗ gρNB∗ Γ 0
B∗ Bπ

B∗

N 1
2

+
N 940 1.0 10.35 3.0 – –

N 1
2

+
P11 1440 0.39 6.34 1.78 350 0.65

N 3
2

−
D13 1520 −1.56 8.88 5.0 120 0.55

N 1
2

−
S11 1535 0.36 −5.12 −2.9 150 0.45

N 1
2

−
S11 1650 0.31 2.56 −0.72 150 0.73

N 5
2

−
D15 1675 0.10 10.87 −3.1 150 0.45

N 5
2

+
F15 1680 −0.42 −14.07 −19.8 130 0.65

N 3
2

−
D13 1700 0.36 2.81 −0.45 100 0.10

N 3
2

+
P13 1720 −0.25 −3.17 −4.46 150 0.15

∆ 3
2

+
P33 1232 2.21 – 17.32 120 0.99

∆ 3
2

+
P33 1600 0.52 – 17.1 350 0.18

∆ 1
2

−
S31 1620 −0.17 – 0.88 150 0.25

∆ 3
2

−
D33 1700 1.32 – 1.53 300 0.15
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Fig. 2. Differential cross-sections of dielectron production for
the reactions π−p → ne+e− as a function of the dielectron
invariant mass for s1/2 = 1.6 GeV (upper panel) and s1/2 =
1.8 GeV (lower panel). Dashed and dot-dashed lines correspond
to separate ω and ρ contributions, while solid lines are for the
coherent sums.

(The masses, decay widths and branching ratios in table 1
represent the averages in [20].) The results of our full cal-
culation of the differential cross-section as a function of
dielectron invariant mass are shown in fig. 2 for the re-
action π−p → ne+e− at two energies, s1/2 = 1.6 and
1.8 GeV. Here and later on, the calculations have been
done for the dielectron (or virtual vector meson) produc-
tion at θ = 30◦ in the corresponding center-of-mass sys-
tem, except for particular cases which are mentioned ex-
plicitly below. We also show separately the contributions
of the ω and ρ channels. At an energy of s1/2 = 1.8 GeV
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Fig. 3. Differential cross-sections of dielectron production for
the reactions π−p → ne+e− (solid lines) and π+n → pe+e−

(dashed lines) as a function of dielectron invariant mass for
s1/2 = 1.6 GeV (upper panel) and 1.8 GeV (lower panel).

(see fig. 2, lower panel), which is about 80 MeV above
the ω production threshold, one can see the sharp ω res-
onance peak at M 
 mω. Away from the ω peak position
one observes a strong decrease of the ω contribution as
compared with the fairly flat ρ contribution at the exhib-
ited scale. In contrast, for an energy sufficiently below the
ω threshold (fig. 2, upper panel), also the ω contribution
is a smooth function of M but below the ρ contribution.
This is because the suppression of the resonance factor in
eq. (4) at M �= mω is much stronger for ω.

For the reaction π+n → pe+e−, the shape of the
invariant-mass distribution is similar and therefore, is not
displayed here. But the absolute values of the correspond-
ing total distributions are different, and this difference is
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Fig. 4. Angular distribution of the individual contributions
of nucleon resonances listed in table 1 to the spin averaged
invariant amplitude of ρ (upper panel) and ω (lower panel)
channels at s1/2 = 1.6 GeV and for Me+e− = 0.6 GeV.

shown in fig. 3, where the reactions π−p → ne+e− and
π+n → pe+e− are compared. The difference reaches a fac-
tor up to three and depends on both the energy and the
invariant mass. At low energy the cross-section for the re-
action π−p is smaller, while at higher energy it is greater
than that for π+n interactions. The reason of this effect is
the difference in ρ-ω interferences in the two reactions and
a different role of individual baryon resonances depend-
ing on the initial energy. In order to get insight into the
resonance dynamics, in figs. 4 and 5 we show the contri-
bution of each resonance separately for ρ (upper panels)
and ω (lower panels) channels as a function of the di-
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Fig. 5. The same as in fig. 4 but at s1/2 = 1.8 GeV and
Me+e− = 0.782 GeV.

electron production angle for the reaction π−p → ne+e−.
Most transparent is the situation for the ω channel. One
can see that dominant contributions come from S11(1535)
and S11(1650) resonances. For ω production their phases
are opposite, while for ρ production they are the same.
At low energy (see fig. 4) the contribution of S11(1535)
is greater and taking into account the additional isospin
factor Iρ in eq. (12) we find a destructive total interfer-
ence at low energy in the reaction π−p → ne+e−, while
for π+n → pe+e− the interference is constructive. In the
ρ channel also the P11(1440) resonance plays a role. At
higher energies (see fig. 5) for ω production the S11(1650)
resonance is dominant and therefore, the total ρ-ω inter-
ference for π−p → ne+e− ( π+n → pe+e−) becomes con-
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Fig. 6. Individual contributions of nucleon resonances to the
spin averaged invariant amplitude of ρ (upper panel) and ω
(lower panel) channels as a function of s1/2 at Me+e− =
0.6 GeV.

structive (destructive) as depicted in fig. 3. For backward
directions, the nucleon channel makes a noticeable contri-
bution.

The relative contribution of different resonances de-
pends on the energy, and this dependence is exhibited
in fig. 6 for dominant resonances at M = 0.6 GeV. One
can see the dominance of S11(1535) at low energy and of
F15(1680) at higher energies. The dominance of S11(1535)
at low energy leads to a strong destructive (constructive)
interference in π−p → ne+e− ( π+n → pe+e−) reactions
shown in fig. 7, where we display the invariant-mass dis-
tribution as a function of energy at M = 0.6 GeV.

In fig. 8 we show the energy dependence of the
invariant-mass distributions at M = 0.6 and 0.782 GeV.
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Fig. 7. Differential cross-sections of dielectron production as a
function of s1/2 for Me+e− = 0.6 GeV for the reactions π−p →
ne+e− (upper panel) and π+n → pe+e− (lower panel).

One can see a striking difference for the two reactions
under consideration. There is also a strong sensitivity on
changes of the invariant dilepton mass M .

Figure 9 (upper panel) displays the energy dependence
of the spin density matrix element ρ00

ρ00 =
Σ‖

Σ‖ + 2Σ⊥
, (16)

at θ = 30◦. One can see a similar qualitative behavior
of ρ00 for the two reactions. The corresponding angular
distributions of electrons, normalized to 1, are shown in
fig. 9 (lower panel). We have to note that near thresh-
old ρ00 is close to 1

3 which results in an almost isotropic
electron distribution. Far above the threshold, for exam-
ple at s1/2 = 1.8 GeV and M = 0.6 GeV, the resonance

1.5 1.6 1.7 1.8

s
1/2

 [GeV]

0.0

0.1

0.2

0.3

d
σ/

d
Ω

q
dM

e
+

e
−2

 [
µb

/(
sr

 G
eV

2
)]

M e
+

e
− =0.6 GeV

π
−

p --> ne
+
e

−

π
+

n --> pe
+
e

−

1.70 1.75 1.80 1.85

s
1/2

 [GeV]

0.0

0.5

1.0

1.5
dσ

/d
Ω

q
dM

e
+ e

−2
 [

µb
/(

sr
 G

eV
2
)]

M e
+

e
− =0.782 GeV

π
−
p --> n e

+
e

−

π
+
n --> p e

+
e

−

Fig. 8. Differential cross-section of dielectron production for
the reactions π−p → ne+e− and π+n → pe+e− as a function
of s1/2 for Me+e− = 0.6 GeV (upper panel) and 0.782 GeV
(lower panel).

F15(1680) becomes dominant and ρ00 exhibits an addi-
tional θ-dependence with maxima at θ = 0, π and a mini-
mum at θ = π

2 , which leads to an anisotropy in the electron
decay distributions.

3.2 Adjusting couplings from resonance decays

All the above results are obtained with resonance param-
eters shown in table 1 and based on the quark model esti-
mates in [18]. In [12,14] coupled-channel calculations are
performed with the goal the extract the couplings from a
combined analysis of a large set of reaction data. To get
an idea on the importance of a particular set of coupling
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Fig. 9. Spin density matrix element ρ00 for π−p → ne+e−

(solid lines) and π+n → pe+e− (dashed lines) as a function
of s1/2 for Me+e− = 0.6 GeV (upper panel), and the angular
distributions of electrons at Me+e− = 0.6 GeV and different
values of s1/2 (lower panel).

strengths within our approach one should compare the
above results with such ones which rely on a different set.
In principle, one can try to get the absolute values of the
ρNB∗ coupling strengths by using the partial branching
ratios of the decays B∗ → Nρ [20] via

gfit 2
ρNB∗

i
= ΓB∗

i
→Nρ

[
2aimρΓρ0

8π2(2Ji + 1)M2
B∗

i

×
∫ s1/2−MN

2mπ

k(M)F (M)MdM

(M2 − m2
ρ)2+(mρΓρ)2

]−1

, (17)

where k(M) =
√

M2/4 − m2
π, ai = 3 (1) for resonances

with isospin- 1
2 ( 3

2 ), and Ji is the resonance spin. The func-
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Fig. 10. Upper panel: individual contributions of nucleon res-
onances listed in table 2 to the spin averaged invariant am-
plitude of ρ production at Me+e− = 0.6 GeV. Lower panel:
the same as in the lower panel of fig. 7 but with resonance
parameters listed in table 2.

Table 2. Parameters for the coupling constants gfit
ρNN∗ calcu-

lated from the partial decay widths ΓB∗→Nρ [20].

Baryon MB∗ gfit
ρNB∗ Bρ

B∗

N 1
2

+
P11 1440 1.07 < 0.08

N 3
2

−
D13 1520 2.70 0.15–0.25

N 1
2

−
S11 1535 −0.63 < 0.04

N 1
2

−
S11 1650 −0.49 0.04–0.12

N 5
2

−
D15 1675 −0.79 0.01–0.03

N 5
2

+
F15 1680 −1.19 0.03–0.15

N 3
2

−
D13 1700 −1.31 < 0.35

N 3
2

+
P13 1720 −13.9 0.7–0.85

∆ 3
2

+
P33 1600 41.0 < 0.25

∆ 1
2

−
S31 1620 1.39 0.07–0.25

∆ 3
2

−
D33 1700 4.27 0.30–0.55
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Fig. 11. Upper panel: the same as in the upper panel of fig. 8
but but with resonance parameters listed in table 2. Lower
panel: the same as in the lower panel in fig. 3 but with reso-
nance parameters listed in table 2.

tion F (M) reads

F (M) = Sp
(
(�p ′ + MN )Gµ,κ Πκ,κ′ Gν,κ′)

×
(
−gµν +

qµgν

M2

)
, (18)

where Gµ,κ (κ = 0, α, αβ) according to eqs. (8),(9) is taken
from eqs. (A.3)-(A.13) and

Πκ,κ′ =
∑

r

Ur
κŪr

κ′ , (19)

with U from eq. (B.19). The corresponding branching ra-
tios and gfit

ρNB∗ are shown in table 2, where the phases are
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Fig. 12. The same as in fig. 9 but with resonance parameters
listed in table 2.

taken the same as predicted by quark model [18] shown in
table 1. One can see that some of the couplings in table 2
are smaller than the corresponding values in table 1 (cf.
P11(1440), D13(1520), S11(1535), S11(1650), D13(1700),
D15(1675), F15(1680)), while for other resonances they are
greater (cf. P33(1600), S31(1620), D33(1700), P13(1720)).
It should be emphasized that a calculation with gfit

ρNB∗ is
not fully self-consistent because one cannot fix the cou-
pling gωNN∗ by this method, rather for them we use the
prediction of the quark model [18] as listed in table 1. Nev-
ertheless, for methodical purposes and to elucidate the
sensitivity of our results, we perform such a calculation
and present the results.

In fig. 10 (upper panel) we show the individual con-
tributions of resonances for the ρ channel of the reac-
tion π+n → pe+e− as a function of s1/2. The resonances
S11(1535) and, somewhat less important, P11(1440) dom-
inate at low energy, while P13(1720) becomes stronger at
higher energies; in between S11(1650) is important. The
total contribution of the ρ-meson with this new parameter
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set is smaller. The differential cross-sections are shown in
fig. 10 (lower panel). The absolute value of the total cross-
section is smaller than that shown in the upper panel of
fig. 7. But qualitatively their behavior is similar for both
parameter sets.

In fig. 11 we show the differential cross-section of di-
electron production for the reactions π−p → ne+e− and
π+n → pe+e− as a function of s1/2 at M = 0.6 GeV
(upper panel) and as a function of M at s1/2 = 1.8 GeV
(lower panel). The isospin effect is greater at low energy
and low invariant mass, as shown in the upper panel.

In fig. 12 we show the energy dependence of the spin
density matrix element ρ00 (upper panel) and electron an-
gular distribution (lower panel) as in fig. 9. One can see a
strong difference of ρ00 for the two reactions and a devia-
tion from the results shown in fig. 9: a strong increase at
low energy for the π+n reaction, because of a sizable con-
tribution of the P11(1440) resonance, and relatively small
value of ρ00 at higher energy, because of the dominance
of the P13(1720) resonance. Also the angular distributions
change considerably for this new parameter set. This sensi-
tivity clearly demonstrates the need of experimental data
for constraining the parameter space.

4 Summary

In summary we have performed a combined analysis of
the dielectron invariant-mass distributions for the exclu-
sive reactions π−p → ne+e− and π+n → pe+e− near the ω
threshold. The differential cross-sections for the two reac-
tions are different because of different ρ0-ω interferences.
The calculation is based on a resonance model with s and
u channels, where the ω(ρ)NB∗ couplings as well as the
phases of the πNB∗ couplings are either taken from the
recent work [18] or, at least partially, are determined from
resonance decays. The found isospin effect is sensitive to
the resonance coupling parameters and therefore, may be
used as a powerful tool for the study of the resonance
dynamics in dielectron production processes.

We have shown that our predictions can be experimen-
tally tested by measuring the angular distribution of decay
particles in reactions of the type πN → NV → Ne+e−
which are accessible with the pion beam at the HADES
spectrometer at GSI/Darmstadt [8]. (Notice that for the
inverse reactions with real photons a sizeable isospin ef-
fect is found, see [25].) We propose for the first time a
systematic study of the isoscalar part of the electromag-
netic current by using a combined analysis of dielecton
production in π+n and π−p reactions. To this end it would
be desirable to have at our disposal the ratio or the dif-
ference of the π+n and π−p cross-sections (which might
be deduced, e.g., from the reactions π+d and π−d) as a
function of both the invariant dilepton mass in the inter-
val M = 0.6 · · · 0.8 GeV and the energy in the interval
s1/2 = s

1/2
threshold · · · 1.9 GeV. This quantity is most sensi-

ble for a study of the ρ-ω interference.
Finally, it should be stressed that the present inves-

tigation is completely based on the resonance model and

therefore, is valid near threshold. At higher energy one
has to include other mechanisms like meson exchange t
channel amplitudes. Unfortunately, in this case one has to
make some assumptions on the relative phase between t
and s, u channels, which is hitherto unknown. However,
we expect that the presented isospin effect will persist in
this case too.
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manuscript. One of the authors (A.I.T.) thanks for the warm
hospitality of the nuclear theory group in the Research Center
Rossendorf. This work is supported by BMBF grant 06DR921
and Heisenberg-Landau program.

Appendix A. Effective Lagrangians

The effective Lagrangians for ω production within the
framework of the Riska-Brown model [18] are listed in
ref. [15]. Therefore, here we focus on ρ production (the
effective interaction Lagrangians needed for ω production
follow from the formulas below by the substitution ρ → ω
and omitting corresponding isospin factors, and skipping
the ∆ and ∆∗ contributions). For completeness we also
include interactions with pions. With the notation of sub-
sect. 2.1, the relevant expressions read

L
N 1

2
+ (940)N

π,ρNN = ψ̄N

[
− fπNN

mπ
γ5γµ ∂µπ · τ

−gρNN

(
γµ − κρNN

2MN
σµν∂ν

)
ρµ · τ

]
ψN , (A.1)

L
∆ 3

2
+ (1232)P33

π,ρN∆ = ψ̄N

[
i
f1232

πN∆

mπ
∂απ · χ − g1232

ρNN∗

M∆ + MN
γ5

× (
γµ∂α − gα

µ �∂)
ρµ · χ

]
ψ∆α + h.c., (A.2)

L
N 1

2
+ (1440)P11

π,ρNN∗ = ψ̄N

[
− f1440

πNN∗

mπ
γ5γµ ∂µπ · τ − g1440

ρNN∗

×
(

γµ + ∂µ �∂m−2
ρ − κρNN∗

MN∗ − MN
σµν∂ν

)
ρµ · τ

]

×ψN∗ + h.c., (A.3)

L
N 3

2
− (1520)D13

π,ρNN∗ = ψ̄N

[
i
f1520

πNN∗

mπ
γ5 ∂απ · τ

+
g1520

ρNN∗

m2
ρ

σµν∂ν∂αρµ · τ

]
ψN∗α + h.c., (A.4)

L
N 1

2
− (1535)S11

π,ρNN∗ = ψ̄N

[
− f1535

πNN∗

mπ
γµ ∂µπ · τ − g1535

ρNN∗γ5
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×(γµ + ∂µ �∂m−2
ρ )ρµ · τ

]
ψN∗ + h.c., (A.5)

L
∆ 3

2
+ (1600)P33

π,ρN∆ = ψ̄N

[
i
f1600

πN∆∗

mπ
∂απ · χ − g1600

ρN∆∗

M∆∗ + MN
γ5

× (
γµ∂α − gα

µ �∂)
ρµ · χ

]
ψ∆α + h.c., (A.6)

L
∆ 1

2
− (1620)S31

π,ρN∆∗ = ψ̄N

[
− f1620

πN∆∗

mπ
γµ ∂µπ · χ

−g1620
ρN∆∗γ5(γµ + ∂µ �∂m−2

ρ )ρµ · χ

]
ψ∆ + h.c., (A.7)

L
N 1

2
− (1650)S11

π,ρNN∗ = ψ̄N

[
− f1650

πNN∗

mπ
γµ ∂µπ · τ − g1650

ρNN∗γ5

×(γµ + ∂µ �∂m−2
ρ )ρµ · τ

]
ψN∗ + h.c., (A.8)

L
N 5

2
− (1675)D15

π,ρNN∗ = ψ̄N

[
− f1675

πNN∗

m2
π

∂α∂βπ · τ

+
g1675

ρNN∗

m2
ρ

εαγµν γν ∂γ∂βρµ · τ

]
ψN∗αβ + h.c., (A.9)

L
N 5

2
+ (1680)F15

π,ρNN∗ = ψ̄N

[
− i

f1680
πNN∗

m2
π

γ5∂
α∂βπ · τ +

g1680
ρNN∗

m2
ρ

×(γµ + ∂µ �∂m−2
ρ )∂α∂βρµ · τ

]
ψN∗αβ + h.c., (A.10)

L
∆ 3

2
− (1700)D33

π,ρN∆∗ = ψ̄N

[
i
f1700

πN∆∗

mπ
γ5∂

απ · χ

+
g1700

ρN∆∗

m2
ρ

σµν∂ν∂αρµ · χ

]
ψ∆α + h.c., (A.11)

L
N 3

2
− (1700)D13

π,ρNN∗ = ψ̄N

[
i
f1700

πNN∗

mπ
γ5∂

απ · τ

+
g1700

ρNN∗

m2
ρ

σµν∂ν∂αρµ · τ

]
ψN∗α + h.c., (A.12)

L
N 3

2
+ (1720)P13

π,ρNN∗ = ψ̄N

[
i
f1720

πNN∗

mπ
∂απ · τ − g1720

ρNN∗

MN∗ + MN
γ5

× (
γµ∂α − gα

µ �∂)
ρµ · τ

]
ψN∗α + h.c. . (A.13)

We use the convention of Bjorken and Drell [26] in defini-
tions of γ matrices and the spin matrix σµν . The expres-
sions, eqs. (A.1)-(A.13), are based on [18].

Appendix B. Invariant amplitudes

Here we list the explicit expressions for the amplitudes
Aµ(N∗) ≡ A(ρ)µ(N∗) = A(ρ)µ

s (N∗) − A(ρ)µ
u (N∗) (expres-

sions for ω production follow from them in a straight-
forward way) and Aµ(∆∗) ≡ A(ρ)µ(∆∗) = A(ρ)µ

s (∆∗) +
A(ρ)µ

u (∆∗) in eq. (12),

Aµ(N940) =

−i
Γ

(ρ)
µ (−q)Λ(pL,MN∗)γ5 �kFN (s)

s − m2
N

+i
γ5 �k Λ(pR,MN∗)Γ (ρ)

µ (−q)FN (u)
u − m2

N

, (B.1)

Aµ(∆1232) =

−i
γ5(qαγµ − gα

µ �q)Λαβ(pL,M∆)kβF∆(s)
(M∆ + MN )(s − M2

∆ + iΓ∆M∆)

−i
kβΛβα(pR,M∆)γ5 (qαγµ − gα

µ �q)F∆(u)
(M∆ + MN )(u − M2

∆ + iΓ∆M∆)
, (B.2)

Aµ(N1440) =

−i
(γµ + κρNN∗

MN∗−MN
qµ)Λ(pL,MN∗)γ5 �k FN∗(s)

s − M2
N∗ + iΓN∗MN∗

+i
γ5 �k Λ(pR,MN∗)(γµ + κρNN∗

MN∗−MN
qµ)FN∗(u)

u − M2
N∗ + iΓN∗MN∗

, (B.3)

Aµ(N1520) =

−σµνqνqαΛαβ(pL,MN∗)γ5k
βFN∗(s)

m2
ρ(s − M2

N∗ + iΓN∗MN∗)

+
γ5k

αΛαβ(pR,MN∗)σµν qνqβFN∗(u)
m2

ρ(u − M2
N∗ + iΓN∗MN∗)

, (B.4)

Aµ(N1535) =

−i
γ5γµΛ(pL,MN∗) �kFN∗(s)

s − M2
N∗ + iΓN∗MN∗

+i
�kΛ(pR,MN∗)γ5γµFN∗(u)

u − M2
N∗ + iΓN∗MN∗

, (B.5)

Aµ(∆1600) =

−i
γ5 (qαγµ − gα

µ �q)Λαβ(pL,M∆∗)kβF∆∗(s)
(M∆∗ + MN )(s − M2

∆∗ + iΓ∆∗M∆∗)

−i
kβΛβα(pR,M∆∗)γ5 (qαγµ − gα

µ �q)F∆∗(u)
(M∆∗ + MN )(u − M2

∆∗ + iΓ∆∗M∆∗)
, (B.6)

Aµ(∆1620) =

−i
γ5γµΛ(pL,M∆∗) �kF∆∗(s)
s − M2

∆∗ + iΓ∆∗MN∆∗

−i
�k Λ(pR,M∆∗)γ5γµF ∗

∆(u)
u − M2

∆∗ + iΓ∆∗M∆∗
, (B.7)
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Aµ(N1650) =

−i
γ5γµΛ(pL,MN∗) �k FN∗(s)

s − M2
N∗ + iΓN∗MN∗

+i
�k Λ(pR,MN∗)γ5γµFN∗(u)

u − M2
N∗ + iΓN∗MN∗

, (B.8)

Aµ(N1675) =

−εα
τµνqτqβkγkδ

mπm2
ρ

(
γνΛαβ,γδ(pL,MN∗)FN∗(s)

s − M2
N∗ + iΓN∗MN∗

− Λγδ,αβ(pR,MN∗)γνFN∗(u)
u − M2

N∗ + iΓN∗MN∗

)
, (B.9)

Aµ(N1680) =

−i
qαqβkγkδ

mπm2
ρ

(
γµΛαβ,γδ(pL,MN∗) γ5FN∗(s)

s − M2
N∗ + iΓN∗MN∗

− γ5Λγδ,αβ(pR,MN∗)FN∗(u)
u − M2

N∗ + iΓN∗MN∗

)
,

Aµ(∆1700) =

−σµνqνqαΛαβ(pL,M∆∗) γ5k
βF∆∗(s)

m2
ρ(s − M2

∆∗ + iΓ∆∗M∆∗)

−γ5k
αΛαβ(pR,M∆∗)σµνqνqβF∆∗(u)
m2

ρ(u − M2
∆∗ + iΓ∆∗M∆∗)

, (B.10)

Aµ(N1700) =

−σµνqνqαΛαβ(pL,MN∗) γ5k
βFN∗(s)

m2
ρ(s − M2

N∗ + iΓN∗MN∗)

+
γ5k

αΛαβ(pR,MN∗)σµνqνqβFN∗(u)
m2

ρ(u − M2
N∗ + iΓN∗MN∗)

, (B.11)

Aµ(N1720) =

−i
γ5(qαγµ − gα

µ �q)Λαβ(pL,MN∗)kβFN∗(s)
(MN∗ + MN )(s − M2

N∗ + iΓN∗MN∗)

+i
kβΛβα(pR,MN∗)γ5(qαγµ − gα

µ �q)FN∗(u)
(MN∗ + MN )(u − M2

N∗ + iΓN∗MN∗)
, (B.12)

with pL = p + k, pR = p − q and

Γ (ρ)
α (k(ρ)) = γα + i

κρNN

2MN
σαβ kβ

(ρ). (B.13)

For completeness, we display also expressions for prop-
agators and Rarita-Schwinger spinors. The resonance
propagators in eqs. (B.1)-(B.12) are defined by the con-
ventional method [27] assuming the validity of the spectral
decomposition

ψN∗(x)=
∫

d3p
(2π)3

√
2Ep

×[
ap,ru

r
N∗(p)e−ipx+b+

p,rv
r
N∗(p)e+ipx

]
. (B.14)

The finite decay width ΓN∗ is introduced into the propa-
gator denominators by substituting MN∗ → MN∗− i

2ΓN∗ .

Therefore, the operators Λ···(p,M) are defined as

Λ(p,M)=
1
2

∑
r

((
1+

p0

E0

)
ur(p, E0) ⊗ ūr(p, E0)

−
(

1− p0

E0

)
vr(−p, E0) ⊗ v̄r(−p, E0)

)
= �p + M, (B.15)

Λαβ(p,M) =
1
2

∑
r

((
1 +

p0

E0

)
Ur

α(p, E0) ⊗ Ūr
β(p, E0)

−
(

1 − p0

E0

)
Vr

α(−p, E0) ⊗ V̄r
β(−p, E0)

)
, (B.16)

Λαβ,γδ(p,M)=
1
2

∑
r

((
1+

p0

E0

)
Ur

αβ(p, E0) ⊗ Ūr
γδ(p, E0)

−
(
1− p0

E0

)
Vr

αβ(−p, E0) ⊗ V̄r
γδ(−p, E0)

)
, (B.17)

where E0 =
√

p2 + M2, and the Rarita-Schwinger spinors
read

Ur
α(p) =

∑
λ,s

〈
1λ

1
2

s

∣∣∣∣32r

〉
ελ
α(p)us(p), (B.18)

Ur
αβ(p) =

∑
λ,λ′s,t

〈
1λ

1
2
s

∣∣∣∣32 t

〉

×
〈

3
2
t1λ′

∣∣∣∣52r

〉
ελ
α(p)ελ′

β (p)us(p). (B.19)

The spinors v and V are related to u and U as v(p) =
iγ2 u∗(p) and V(p) = iγ2 U∗(p), respectively. In our cal-
culations we use energy-dependent total resonance decay
widths ΓN∗ . However, taking into account that the effect
of a finite width is quite different for s and u channels,
because of the evident relation |u| + M2

N∗ � |s − M2
N∗ |,

we use ΓN∗ = Γ 0
N∗ for the u channels and

ΓN∗ = Γ 0
N∗

[
1 − Bπ

N∗ + Bπ
N∗

(
k
k0

)2J
]

(B.20)

for the s channels, where Γ 0
N∗ is the total on-shell res-

onance decay width and Bπ
N∗ stands for the branching

ratio of the N∗ → Nπ decay channel taken from [20]; k0

is the pion momentum at the resonance position, i.e. at√
s = MN∗ , and the factor (k/k0)2J comes from a direct

calculation of the N∗ → Nπ decay width using the effec-
tive Lagrangians of eqs. (A.3)-(A.13), where we keep the
leading term proportional to k2J .

References

1. CERES collaboration (G. Agakishiev et al.), Phys. Rev.
Lett. 75, 1272 (1995).

2. W. Cassing, E.L. Bratkovskaya, Phys. Rep. 308, 65 (1999).



A.I. Titov et al.: Isoscalar-isovector interferences in πN → Ne+e− reactions... 229

3. R. Rapp, J. Wambach, Adv. Nucl. Phys. 25, 1 (2000).
4. G.E. Brown, M. Rho, hep-ph/0103102.
5. M.A. Shifman, A.I. Vainstein, V.I. Zakharov, Nucl. Phys.

B 147, 385 (1979); T. Hatsuda, S.H. Lee, Phys. Rev. C
46, R34 (1992); A.K. Dutt-Mazumder, R. Hofmann, M.
Pospelov, Phys. Rev. C 63, 015204 (2001).

6. F. Klingl, N. Kaiser, W. Weise, Nucl. Phys. A 624, 527
(1997); Z. Phys. A 356, 193 (1996); F. Klingl, W. Weise,
Eur. Phys. J. A 4, 225 (1999); F. Klingl, T. Waas, W.
Weise, Nucl. Phys. A 650, 299 (1999); M. Urban, M.
Buballa, J. Wambach, Nucl. Phys. A 673, 357 (2000) and
references therein.

7. DLS collaboration (R.J. Porter et al.), Nucl. Phys. A 638,
499 (1998).

8. HADES collaboration (J. Friese et al.), GSI report 97-1,
(1997) p. 193; Prog. Part. Nucl. Phys. 42, 235 (1999).

9. M. Effenberger, E.L. Bratkovskaya, W. Cassing, U. Mosel,
Phys. Rev. C 60, 027601 (1999).

10. B. Friman, H.J. Pirner, Nucl. Phys. A 617, 496 (1997).
11. B. Friman, Acta Phys. Polon. B 29, 3195 (1998) .
12. M. Lutz, G. Wolf, B. Friman, Nucl. Phys. A 661, 526

(1999); B. Friman, M. Lutz, G. Wolf, nucl-th/0003012;
M. Lutz, G. Wolf, B. Friman, work in preparation.

13. M. Soyeur, M. Lutz, B. Friman, nucl-th/0003013.

14. M. Post, S. Leupold, U. Mosel, Nucl. Phys. A 689, 753
(2001); M. Post, U. Mosel, Nucl. Phys. A 688, 808 (2001).

15. A.I. Titov, B. Kämpfer, B.L. Reznik, nucl-th/0102032.
16. G.I. Lykasov, W. Cassing, A. Sibirtsev, M.V. Rzyanin,

Eur. Phys. J. A 6, 71 (1999).
17. N.M. Kroll, T.D. Lee, B. Zumino, Phys. Rev. 157, 1376

(67).
18. D.O. Riska, G.E. Brown, Nucl. Phys. A 679, 577 (2001).
19. D.M. Manley, E.M. Saleski, Phys. Rev. D 45, 4002 (1992).
20. Particle Data Group (C. Caso et al.), Eur. Phys. J. C 3, 1

(1998).
21. T. Feuster, U. Mosel, Phys. Rev. C 58, 457 (1998); 59, 460

(1999).
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